
nextwork.org

Set Up
Kubernetes
Deployment

Nicolás Aversa

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will take a backend application from GitHub and prepare it for
Kubernetes deployment because I need to package it properly before my cluster
can run it. This means I'll clone the repository, build it into a Docker container
image, and push that image to an Amazon ECR repository.

Tools and concepts

I used Amazon EKS, Git, Amazon EC2, Docker, and Amazon ECR to deploy a
backend app on Kubernetes. Key steps include: 1. Setting up EKS to host the
Kubernetes cluster. 2. Cloning the GitHub repo with the Flask backend code. 3.

Building a Docker image of the app and pushing it to Amazon ECR.

Project reflection

This project took me approximately 90 minutes. The most challenging part was
troubleshooting all the EC2 terminal errors. My favourite part was when I viewed
my container image deployed in ECR.

Something new that I learned from this experience was how seamlessly Docker
and Kubernetes work together to deploy applications. They act as a great duo.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

What I'm deploying

To set up today's project, I launched a Kubernetes cluster. Steps I took to do this
included: 1. Launching an EC2 instance. 2. Connecting to my instance using EC2

Instance Connect. 3. Run a command in my EC2 instance's terminal to download,

extract, and install eksctl from a GitHub repo. 4. Attaching an IAM role 'nextwork-
eks-instance-role' to my EC2 instance, which has AdministratorAccess. 5. Run a
command to create my EKS cluster; specifying name, nodegroup name, node type,

number of nodes (desired, min and max).

I'm deploying an app's backend

Next, I retrieved the backend that I plan to deploy. An app's backend means the
part where the app processes user requests and stores and retrieves data. Unlike
frontend code, which is what users see and interact with, backend code works on
the server side (i.e. in the background) to make sure the app behaves as expected
(e.g. loads a new page) when a user does things like clicking on buttons. I retrieved
backend code by cloning the nextwork-flask-backend repository from GitHub.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Building a container image

Once I cloned the backend code, my next step is to build a container image of the
backend. This is because Kubernetes needs to pull the app from a container image
that it can access. This container image was built using the data in the Dockerfile.

Then, the container image lets Kubernetes set up multiple, identical containers so
the application runs consistently across different environments.

When I tried to build a Docker image of the backend, I ran into a permissions error
because ec2-user, which is the user I've used to access this instance, doesn't
have permission to run Docker commands. When Docker was installed, it was set
up for the root user, while ec2-user is kind of like logging into an AWS account as
an IAM admin user—youʼve got a lot of control but not the absolute top level unless
you're using sudo to run the commands.

To solve the permissions error, I added ec2-user to the Docker group. The Docker
group is a group in Linux systems that gives users the permission to run Docker
commands. When you add a user (e.g., ec2-user) to the Docker group, it lets that
user run Docker commands without typing sudo every time.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Container Registry

I'm using Amazon ECR in this project to securely store, share, and deploy my
container image. ECR is a good choice for the job because it's an AWS service,

which lets EKS deploy my container image with minimal authentication setup.

Container registries like Amazon ECR are great for Kubernetes deployment
because your cluster can pull whatever is the latest image in your repository on
demand, which makes deployments stay consistent across all nodes automatically.
If you didn't use a container registry, youʼd need to preload every node in your
Kubernetes cluster with the image. You'd also need to update each node manually
with every change to your container image.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

EXTRA: Backend Explained

After reviewing the app's backend code, I've learned that it works like a helpful
messenger between users and Hacker News. When someone asks for information
about a specific topic, the backend quickly reaches out to Hacker News to find
relevant stories. It then carefully selects just the most important details - the story
titles and their web links - and packages them up in a clean, easy-to-read format.
The whole system is built using straightforward tools that specialize in different
tasks: Flask handles the conversations with web browsers, Requests manages the
communication with Hacker News, and Docker ensures everything runs smoothly
no matter where it's deployed.

Unpacking three key backend files

The requirements.txt file lists the dependencies the application needs to run
properly.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

The Dockerfile gives Docker instructions on how a Docker image of the backend
should be built. Key commands in this Dockerfile include: 1. WORKDIR /app: sets
/app as the working directory in the container, so the commands in the rest of this
Dockerfile will be run from there. 2. COPY requirements.txt: requirements.txt
copies the requirements.txt file from my EC2 instance into the container's /app
directory. 3. RUN pip3 install -r requirements.txt: installs the dependencies in
requirements.txt.

The app.py file contains the core logic for the Flask backend. It sets up an API
endpoint (/contents/<topic>) that fetches data from the Hacker News Search API
when users request a specific topic. The code extracts relevant content (IDs, titles,
URLs) from Hacker News, formats it into JSON, and sends it back as a response.

Essentially, it acts as a bridge between users and external data, simplifying access
to curated information.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

