
nextwork.org

Deploy Backend
with Kubernetes

Nicolás Aversa

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will set up the backend of an app for deployment and install kubectl
to deploy it on a Kubernetes cluster.

Tools and concepts

I used Kubernetes, ECR, kubectl to deploy a Flask backend on AWS. Key concepts
include using manifests (YAML files) to define the app setup, containers to
package the app, and kubectl commands to control everything. The system
automatically keeps the app running and scales it when needed.

Project reflection

This project took me approximately 2 hours. The most challenging part was
understanding what Pods are. My favourite part was when I verified that my
backend application was successfully deployed in EKS.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Project Set Up

Kubernetes cluster

To set up today's project, I launched a Kubernetes cluster. The cluster's role in this
deployment is to orchestrate containerized applications, ensuring scalability, high
availability, and efficient resource management.

Backend code

I retrieved backend code by configuring Git with my GitHub credentials and cloning
the backend application repository. Pulling code is essential to this deployment
because I'm copying all the code and resources onto my EC2 instance so I can
build, run, and deploy the backend part of my project.

Container image

Once I cloned the backend code, I built a container image because this container
image lets Kubernetes set up multiple, identical containers so my application runs
consistently across different environments. Without an image, it would be difficult
for Kubernetes to distribute, scale, or manage the application.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

I also pushed the container image to a container registry, which is a place to
securely store, share, and deploy container images. ECR facilitates scaling for my
deployment because it provides a fast, reliable, and secure way for Kubernetes to
access the exact container image needed to spin up identical instances of my
application across multiple nodes in the cluster.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Manifest files

Kubernetes manifests are a set of instructions that tells Kubernetes how to run your
app. Manifests are helpful because without manifests, Kubernetes wouldnʼt know
how to set up and manage your app automatically. This means you'd have to
manually configure each container every time you deploy, which would be
confusing, error-prone, and hard to repeat. Manifests make deployment simple,

clear, and consistent.

A Deployment manifest manages the desired state of your application within a
Kubernetes cluster, defining how your containerized workload should be deployed,

updated, and maintained. The container image URL in my Deployment manifest
tells Kubernetes where to pull the container image from when it deploys my
application.

A Service resource exposes your app to the outside world or other parts of your
system. My Service manifest sets up a Service that routes external traffic to port
8080 on the groups of containers labeled nextwork-flask-backend; it makes them
accessible from outside the cluster. This Service lets me access my backend using
my node's IP and a port number.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Backend Deployment!

To deploy my backend application, I installed kubectl, run a command to give
myself the permission to use kubectl, and run kubectl apply -f flask-
deployment.yaml kubectl apply -f flask-service.yaml.

kubectl

kubectl is the command-line tool for interacting with Kubernetes resources (e.g. ,

Deployment or Service resources) once your cluster is up and running. I need this
tool to deploy applications and manage resources within the cluster. I can't use
eksctl for the job because eksctl is just for setting up and managing the cluster
itself, while kubectl is for managing what runs inside it.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Verifying Deployment

My extension for this project is to use the EKS console to see my cluster nodes in
action. I had to set up IAM access policies because AWS permissions alone donʼt
automatically carry over to Kubernetes — Kubernetes has its own way of
managing access within a cluster. Even if I have AdministratorAccess in AWS,

Kubernetes will only let you into different parts of the cluster if you have
permissions under its own system too. I set up access by using a terminal
command where I provide my IAM User's ARN.

Once I gained access into my cluster's nodes, I discovered pods running inside
each node. Pods are the smallest deployable units in Kubernetes. Containers in a
pod share the same network space and storage so they can communicate and
share data more efficiently.

The EKS console shows you the events for each pod, where I could see the steps
that happened when Kubernetes was creating my pod. This validated that my
backend application was successfully deployed.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

