
nextwork.org

Build a Three-Tier
Web App

Nicolás Aversa

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Introducing Today's Project!

In this project, I will demonstrate how to build a complete serverless three-tier
application architecture using AWS services. I'm doing this project to learn how to
properly structure a cloud-native application by separating concerns into
presentation, logic and data layers while maintaining seamless integration between
all components.

Tools and concepts

Services I used were S3, CloudFront, Lambda, API Gateway, IAM, and DynamoDB.

Key concepts I learnt include Lambda functions, and mainly troubleshooting
console errors, while the architecture setup was quick since I'd done it before in
the earlier projects.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Project reflection

This project took me approximately two and a half hours. The most challenging
part was troubleshooting the console errors - particularly resolving the CORS
policy blockage by updating my Lambda's response headers, fixing the API
Gateway configuration, and ensuring proper cache invalidation in CloudFront after
uploading the corrected script.js. It was most rewarding to see my CloudFront-
distributed site successfully fetch and display real-time data from DynamoDB,

confirming all three architecture tiers were communicating.

I took on this project to gain my first hands-on experience building a complete
serverless application on AWS. As a beginner, I wanted to learn how to connect
essential serverless services - S3 for storing website files, CloudFront for global
distribution, Lambda for backend logic, API Gateway for RESTful endpoints, and
DynamoDB for data storage - all without managing servers. This project absolutely
met my goals. It successfully helped me understand how these services integrate
in a real-world scenario and gave me my first real grasp of how serverless
architectures actually work in practice.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Presentation tier

For the presentation tier, I will set up an S3 bucket to store website's files and
configure CloudFront as a CDN because this provides a highly available and
globally distributed foundation for delivering my web content. The S3 bucket will
securely store all frontend assets like HTML, CSS and JavaScript files, while
CloudFront will cache and serve these files from edge locations worldwide to
ensure fast loading times for users regardless of their geographic location.

I accessed my delivered website by opening my CloudFront distribution domain
name in a new tab. I created an origin access control (OAC), which lets you keep
your S3 bucket and objects not publicly accessible, while still making sure they can
be accessed through CloudFront. Then, I pasted the OAC policy into my S3

bucket's bucket policy, to explicitly grant the OAC permission to the bucket's
contents.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Logic tier

For the logic tier, I will set up a Lambda function that retrieves user data from a
DynamoDB table. As a way to expose that functionality to the outside world, I'll use
API Gateway to handle requests and route them to the right place.

The Lambda function retrieves data by looking for specific user data based on a
'userId' and returns that data. If there's an error e.g. the userId doesn't exist in the
database, it returns an error message.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Data tier

For the data tier, I will set up a DynamoDB table to store some user data, which will
then be retrieved by the Lambda function.

The partition key for my DynamoDB table is 'userId', which means DynamoDB will
organize and distribute all data based on unique user identifiers. This lets my
Lambda function instantly retrieve any user's data through direct partition access,
ensuring fast, scalable performance as the user base grows.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Logic and Data tier

Once all three layers of my three-tier architecture are set up, the next step is to
update my script.js file with JavaScript code because I need my web app to be
able to make a request to my API Gateway endpoint and display the returned data.

To test my API, I appended /users?userId=1 to the end of my prod stage API's
Invoke URL. The results were successful; my table's data got returned by the API.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Console Errors

The error in my distributed site was because my API was not actually getting
fetched. I was not referencing it.

To resolve the error, I updated script.js by replacing the '[YOUR-PROD-API-URL]'

for my prod stage API's Invoke URL. I then reuploaded it into S3 because this file
now has the latest version. However, since CloudFront was still serving the cached
version, I had to create an invalidation to force the CDN to fetch script.js from S3,

ensuring all users would receive the corrected version of my file.

I ran into a third error after updating script.js. This was an error with CORS because
my API Gateway is not configured to allow requests from my CloudFront URL.

CORS (Cross-Origin Resource Sharing) is like a security bouncer for your browser.
It decides whether the frontend (like my CloudFront-hosted site) is allowed to talk
to a backend server (like API Gateway).

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Resolving CORS Errors

To resolve the CORS error, I first headed to Amazon API Gateway and enabled
CORS on my /users resource. In the settings, I set my CloudFront distribution
domain name as the Access-Control-Allow-Origin value.

I also updated my Lambda function because since proxy integration is enabled, API
Gateway simply forwards the request to my Lambda function and expects the
Lambda to return the full HTTP response, including the CORS headers. The
changes I made were including the Access-Control-Allow-Origin header in the
response, referencing my CloudFront domain name.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


Nicolás Aversa
NextWork Student NextWork.org

Fixed Solution

I verified the fixed connection between API Gateway and CloudFront by doing one
more refresh of my CloudFront domain name. After that, I typed 1 in the User ID
input, clicked on 'Get User Data' and the data was successfully retrieved.

https://community.nextwork.org/c/i-have-a-question?automatic_login=true


NextWork.org

Everyone
should be in a
job they love.
Check out nextwork.org for
more projects

https://community.nextwork.org/c/i-have-a-question?automatic_login=true
https://community.nextwork.org/c/i-have-a-question?automatic_login=true

